

Considerations for Processing Materials with Dust Explosion Hazards in a Granulation Process

Company: Stellar Manufacturing Co. Presenter: Wiley Bradford

About Stellar Manufacturing

- Stellar Manufacturing Co. is a contract manufacturing company that specializes in processing dry chemicals.
- Stellar has over 25 years of experience in contract manufacturing.
- Stellar offers integrated manufacturing processes to make your materials marketable - from powder to product.

From Powder to Product

PACKAGING & SUPPLY MANAGEMENT

Don't Ignore Dust Explosion Hazards!

- Imperial Sugar Dust Fire and Explosion:
 - Georgia (14 killed, dozens injured) February 2008

What are the 3 Requirements for a Fire to Occur?

E

FUEL

What are 2 Additional Requirements for Dust Explosion to Occur?

What is Combustible Dust?

- Dry powder that presents a fire or explosion hazard when suspended in air
- -Either organic or metal dusts that are finely ground into very small particles

Identify If Material Presents Hazard

- SDS
 - Hazards
 - Storage and Handling
 - Physical Properties
- Material Testing Information
 - Severity of Explosion
 - Ease of Ignition
 - Concentrations

Kst Value

• The dust deflagration index, measures the relative explosion severity compared to other dusts. The larger the value for Kst, the more severe the explosion.

Examples of K_{st} Values for Different Types of Dusts

Dust explosion class*	K _{st} (bar.m/s)*	Characteristic*	Typical material**
St 0	0	No explosion	Silica
St 1	>0 and ≤ 200	Weak explosion	Powdered milk, charcoal, sulfur, sugar and zinc
St 2	>200 and \leq 300	Strong explosion	Cellulose, wood flour, and poly methyl acrylate
St 3	>300	Very strong explosion	Anthraquinone, aluminum, and magnesium

The actual class is sample specific and will depend on varying characteristics of the material such as particle size or moisture.

* OSHA CPL 03-00-008 - Combustible Dust National Emphasis Program.

** NFPA 68, Standard on Explosion Prevention by Deflagration Venting.

Minimum Ignition Energy (MIE)

- The minimum ignition energy, which predicts the ease and likelihood of ignition of a dispersed dust cloud.
- Materials that ignite above 0.50 joules are not considered sensitive to ignition by electrostatic discharge.
 - Min. Ignition Temp. of a Cloud < 400° C
 - Min. Ignition Temp. of a Layer 5mm < 300° C
 - Min. Ignition Energy of a Cloud < 15 mJ

Source: Combustible Dusts, Bruce L. Rotter, AIHce 2006, Chicago, IL

Minimum Explosible Concentration (MEC)

 The minimum explosible concentration, which measures the minimum amount of dust dispersed in air required to spread an explosion.

Factors Impacting A Powder's Explosibility

Moisture content

- Below 5% is considered "dry"
- Surface moisture of particle can impact electrical conductivity

Particle Size

- Ignition sensitivity and explosibility increases as particle size decreases
- Particle Shape
- Operating Temperature
- Operating Pressure
- Concentration

Explosion Protection Strategies

- Detection and Removal of Oxygen
 Inert Gas (CO2, Nitrogen)
- Containment of Explosion
 - Control Propagation
- Venting
 - Explosion Door

Eliminate Sources of Ignition

Static Electricity

- Properly grounded equipment and personal
- Heat from bearing or motor
 - Temperature Sensors, Alignment Sensors
- Tramp Metal Spark
 - Magnets
- Electrical Spark
 - Properly sealed wiring, special plugs
- Forklift
 - Appropriately rated forklift

Eliminate Sources of Fuel & Oxygen

- Buildup of Dust on Equipment
- Purging Equipment with an Inert Gas

Case Study

Compaction and Granulation System

OSHA & NFPA Standards May Apply

Equipment Specific

- Dust Collector
 - Explosion Venting,
 Ductwork Isolation
 Valve, and
 Grounding

- Bucket Elevators
 - Belt Alignment, Speed, and Bearing
 Temperature Sensors,
 Explosion Venting

• Milling

Rare Earth Magnets

Overall Process

- Electrical
 - Motors, Electrical Wiring, and Sensors (Class 2 Div2)
- Personnel
 - Training, Grounding, Forklift, Vacuums
- Structure/Building/Walls
 Fire Rating, Dust Accumulations
- Procedures
 - MOC

Compaction System

Summary

Fuel

Ignition

Thank you! Questions?

